X64 Reference

e movq (opd;) {(opda) - Copy the 8-byte value of opdy into opds

e addq (opd;) (opdsa) - Put the result of opds + opdy into opds

e subq (opd;) (opds) - Put the result of opda — opd;y into opds

e imulq (opd;) - Put the result of %rax * opdy into the octoword %rdz:%rax
e callq (Ibl) - Stack (push) the address of the next instruction, move %rip to the address (Ibl)
o retq - Unstack (pop) into %rip

e xorq (opd;) (opds) - Put the result of (opdz) XOR (opdy) into opdy

e negq (opd) - Put the 2’s complement negation of {(opd) into {opd)

e notq (opd) - Flip all bits of {opd)

e jmp (Ibl) - jump to (Ibl)

e cmpq (opdy) {opds) - Set rflags according to (opds) - {opdy)

e je (Ibl) - jump to (Ibl) if rflags indicates a = relation on prior operands

e jne (Ibl) - jump to (Ibl) if rflags indicates a # relation on prior operands
e jge (Ibl) - jump to (Ibly if rflags indicates a > relation on prior operands
e jl (Ibl) - jump to (Ibl) if rflags indicates a < relation on prior operands

e jg (Ibl) - jump to (Ibl) if rflags indicates a > relation on prior operands

e jle (Ibl) - jump to (Ibl) if rflags indicates a < relation on prior operands

e scte (opd) - Set opd to be 1 if rflags indicates that the last compare operation had equal operands, 0
otherwise. (opd) must be a 1-byte register.

e setg (opd) - Set opd to be 0 if rflags indicates that the last compare operation had an opdy less than or
equal to its opdy, 1 otherwise. (opd) must be a 1-byte register.

e sctle (opd) - Set opd to be 0 if rflags indicates that the last compare operation had an opdy greater than
its opdy, 0 otherwise. (opd) must be a 1-byte register.

Registers

General-purpose registers

e rax - Y%rdx (lowest 1 byte is %al - %dl)
e %r8 - %r15 (lowest 1 byte is %r8b - %rl5b)
e Jrsi (lowest 1 byte is %sil)
e %rdi (lowest 1 byte is %dil)
e Jrsp - stack pointer
e Jrbp - base pointer
Select special-purpose registers

e Jrflags status flags, stores comparison results

e Jrip instruction pointer, next address to execute



3AC Reference

List of Pseudoinstructions operating over pseudovariables. It’s ok to fudge this a little bit, as long as you
don’t nest expressions or instructions.

X 1=y op z
Perform a logical, relational, or mathematical operation on y and z, then assign the result to x. You may
assume relational and logical operators represent true as 1, false as 0.

X 1=y
Assign the value of pseudovariable y to pseudovariable x

iftrue x goto L
If psuedovariable x has the value 1, jump to the program location with label L.

iffalse x goto L
If psuedovariable x has the value 0, jump to the program location with label L.

goto L
Jump to the program location with label L.

call p
Transfer control to the body of function p with any arguments set via the set_arg pseudoinstruction.

setarg k, x
Set the kth argument value in caller to x.

setret x
Set the return value to x.

getarg k, x
Set the kth argument value in callee to x.

getret x
Set x to the return value from the last call.

enter (proc)
Begin procedure (proc).

leave (proc)
End procedure (proc).

label L Mark the next instruction as being at label L.
WRITE x, y Output the value of x to filesystem handle x.
READ x, y Get the value of x from filesystem handle y.



